电解离子接地极(第 137-139 页)(CSHBFL-DJ): 通过释放离子改善土壤导电性,获得低阻抗接地。内部填充的电解离子化合物(含氯化钠、硅胶、活性剂等)通过潮解作用,将活性离子(如 Cl⁻、Na⁺)缓慢释放到周围土壤中,降低土壤电阻率。离子渗透范围可达接地极周围数十米,形成"离子扩散区",长期改善土壤导电性,尤其适用于高电阻率地质(如岩石、砂土、冻土)。特殊材料保持土壤湿润,维持离子释放效果,减少因干燥导致的电阻波动。

名称	型号	外径 (mm)	长度 (mm)	理论重量 (kg)	冲击电流 (△R)	PH值	100Ω.m 降阻 (Ω)
电解离子接地极	CSHBFL-DJ	50	1500	7.5	≤1%	7±5%	2
			3000	15	≤1%	7±5%	1
	CSHBFL-DJ	55	1500	8	≤1%	7±5%	2
			3000	16	≤1%	7±5%	1
	CSHBFL-DJ	60	1500	10	≤1%	7±5%	2
			3000	20	≤1%	$7\pm5\%$	1
技术说明	CSHBFL-DJ电解离子接地极完全符合UL.NEC.ANS.IEC.BS等国际标准对接地保护设备的要求。						

电极数量 接地电阻 土壤电阻	1	2	3	4	5
300	< 5.9	< 3.4	< 2.5	< 1.7	••••
400	< 7.9	< 4.6	< 3.3	< 2.3	••••
500	< 9.9	< 5.8	< 4.2	< 2.9	•••
600	< 11.8	< 6.9	< 4.9	< 3.5	•••
700	< 13.8	< 8.1	< 5.8	< 4.0	***
800	< 15.8	< 9.3	< 6.6	< 4.7	•••
900	< 17.8	< 10.4	< 7.4	< 5.2	
1000	< 19.8	< 11.6	< 8.3	< 5.9	***
设计方法及参 考用量			ρ为土壤的平均电阻率		
		ρ≈2R√S	R为现地网的接地电阻		
			S为现联合地网的面积		
			n为所需接地电极的支数		
	n	$\approx 0.0275 \rho/R-0.000$	ρ为土壤电阻率		
			R为接地电阻最大值		

一、产品概述

1.1 核心技术: 融合国际先进技术与中国接地行业经验自主研发

1.2 材质构成:

外覆层: 镀铜钢/纯铜 (保障导电性与耐腐蚀性)

内芯: 特制电解离子化合物 (含长效防腐降阻剂、活性离子剂等)

二、核心功能

2.1 降阻原理:通过潮解作用持续释放活性电解离子,改良土壤导电性

2.2 技术优势:

电阻率降低效果显著 (100Ω.m 土壤可降阻 1-2Ω)

PH 值稳定 (7±5%) , 适应复杂地质

冲击电流稳定性 (△R≤1%)

使用寿命长 (材料耐腐蚀性强)

三、技术参数

型 号	外径(mm)	长度(mm)	重量(kg)	降阻值(Ω)	适用土壤电阻率	
	50	1500	7.5	2		
		3000	15	1	_≤1000Ω.m	
CSHBFL-DJ	55	1500	8	2		
C3HBFL-DJ		3000	16	1		
	60	1500	10	2		
		3000	20	1		

四、设计应用

4.1 适用场景:

高要求接地工程:通信基站、电力设施、石化系统、铁路电气化等

特殊地质: 高电阻率土壤、盐碱地、垃圾土、风化砂土等

4.2 设计参数:

电阻计算公式: p≈2R√S (p-土壤电阻率, R-接地电阻, S-地网面积)

电极数量公式: n≈0.0275p/R-0.4 (n-电极数量)

五、施工规范

5.1 施工流程:

钻孔→配制填充料(水:填充料=0.4-0.6:1)→安装接地极→连接引线→回填→电阻测试

5.2 关键步骤:

密封胶带处理: 保留通气孔以保证离子释放

填充比例控制:底部填充 1/4,剩余分层填充至距顶端 100mm

多电极配置:间距≥5m,需并联使用时确保电气连接

六、产品特性

6.1 环保性:无污染,符合 UL/NEC/IEC/BS 等国际标准

6.2 适应性:适用于黑土、黄土、山地等多种地形

6.3 经济性: 相比传统接地工艺节省占地, 施工周期短

七、配套说明

7.1 引出线配置:铜线+镀锌扁铁组合,支持螺丝紧固或焊接

7.2 检测要求: 安装后 24 小时吸湿期后复测电阻

7.3 维护建议: 定期检查接地电阻, 建议每季度检测一次